GYMNASIUM AM MÜNSTERPLATZ

FORMELSAMMLUNG MATHEMATIK 10. BIS 13. SCHULJAHR

Münsterplatz 15 4051 Basel

Telefon +41 (0)61 267 88 70 Telefax +41 (0)61 267 88 72

Email gymnasium.muensterplatz@bs.ch

Internet gmbasel.ch

Inhaltsverzeichnis

1	Konstanten	2							
2	Zahlenmengen								
3	Grössen elementarer Figuren und Körper								
4	Strahlensätze								
5	Flächensätze für rechtwinklige Dreiecke								
6	Trigonometrie								
7									
8	Potenzen								
9	Logarithmus	5							
10	Folgen und Reihen 10.1 Grenzwert einer Zahlenfolge	5 5 5							
11	Funktionen	6							
12	2 Grenzwerte von Funktionen 12.1 Stetigkeit einer Funktion	6 7 7 7 8 8							
13	Integration 13.1 Unbestimmte Integration	8 8							
14	Statistik	9							
15	6 Kombinatorik	10							
16	Wahrscheinlichkeitsrechnung 16.1 Bedingte Wahrscheinlichkeit	10 11							
17	Zufallsvariablen 17.1 Spezielle Zufallsvariablen	11 12							
18	3 Analytische Geometrie und Vektorgeometrie	13							
19	Wertetabelle der Verteilungsfunktion der Standardnormalverteilung	15							

1 Konstanten

- 1. Kreiszahl $\pi \approx 3.141592653590$
- 2. Eulersche Zahl $e \approx 2.718281828459$

2 Zahlenmengen

- 1. Die Menge der natürlichen Zahlen wird mit \mathbb{N} bezeichnet: $\mathbb{N} = \{1, 2, 3, ...\}$.
- 2. Die mit null erweiterte Menge der natürlichen Zahlen wird mit \mathbb{N}_0 bezeichnet: $\mathbb{N}_0 = \{0, 1, 2, ...\}$.
- 3. Die Menge der ganzen Zahlen wird mit \mathbb{Z} bezeichnet: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$.
- 4. Die Menge der rationalen Zahlen wird mit \mathbb{Q} bezeichnet.
- 5. Die Menge der reellen Zahlen wird mit \mathbb{R} bezeichnet.
- 6. Die Menge der irrationalen Zahlen wird mit \mathbb{I} bezeichnet: $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$.

3 Grössen elementarer Figuren und Körper

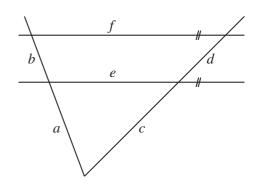
1. Flächeninhalt eines Dreiecks ABC:

$$A = \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c$$

- 2. Gleichseitiges Dreieck mit Seitenlänge s:
 - (a) Höhe $h = \frac{\sqrt{3}}{2} \cdot s$
 - (b) Flächeninhalt $A = \frac{\sqrt{3}}{4} \cdot s^2$
- 3. Kreis mit Radius r:
 - (a) Umfang: $U = 2\pi \cdot r$
 - (b) Flächeninhalt: $A = \pi \cdot r^2$
- 4. Volumen eines Prismas mit Grundflächeninhalt G und Höhe h: $V = G \cdot h$
- 5. Volumen eines Kreiszylinders mit Radius r und Höhe h: $V = \pi r^2 \cdot h$
- 6. Volumen einer Pyramide mit Grundflächeninhalt Gund Höhe $h\colon\quad V=\frac{1}{3}\cdot G\cdot h$

4 Strahlensätze

V-Figur:



1. Strahlensatz:

$$a:b:(a+b)=c:d:(c+d)$$
 \Leftrightarrow $\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}$

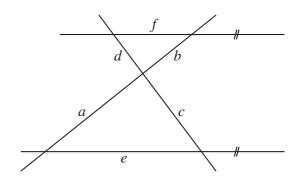
2. Strahlensatz:

$$\frac{a}{e} = \frac{a+b}{f} \quad \Leftrightarrow \quad \frac{a}{a+b} = \frac{e}{f}$$

oder

$$\frac{c}{e} = \frac{c+d}{f} \quad \Leftrightarrow \quad \frac{c}{c+d} = \frac{e}{f}$$

X-Figur:



1. Strahlensatz:

$$a:b:(a+b)=c:d:(c+d)$$
 \Leftrightarrow $\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}$

2. Strahlensatz:

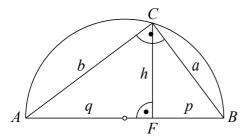
$$\frac{a}{e} = \frac{b}{f} \quad \Leftrightarrow \quad \frac{a}{b} = \frac{e}{f}$$

oder

$$\frac{c}{e} = \frac{d}{f} \quad \Leftrightarrow \quad \frac{c}{d} = \frac{e}{f}$$

5 Flächensätze für rechtwinklige Dreiecke

Sätze: Im Dreieck ABC sei $\gamma = 90^{\circ}$, dann gilt:



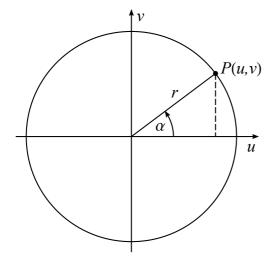
- 1. Satz des Pythagoras: $a^2 + b^2 = c^2$
- 2. Höhensatz: $p \cdot q = h^2$
- 3. Kathetensatz: $p \cdot c = a^2$ und $q \cdot c = b^2$

Es gelten auch die Umkehrungen dieser Sätze.

6 Trigonometrie

Definitionen:

1. Sinus- und Kosinusfunktion:



$$\sin(\alpha) = \frac{v}{r}$$
 und $\cos(\alpha) = \frac{u}{r}$

2. Tangens- und Kotangensfunktion:

$$\tan(\alpha) = \frac{\sin \alpha}{\cos \alpha}$$
 und $\cot(\alpha) = \frac{\cos \alpha}{\sin \alpha}$

3. Gradmass und Bogenmass:

$$\alpha_{\rm rad} = \frac{2\pi}{360^{\circ}} \cdot \alpha_{\rm deg} \,,$$

wobei $2\pi = 360^{\circ}$ ist.

4. (a) Die Arcussinusfunktion ist für $-\frac{\pi}{2} \le x \le \frac{\pi}{2} \text{ definiert durch:}$

$$\arcsin(\sin x) = x$$
.

(b) Die Arcuskosinusfunktion ist für $0 \le x \le \pi$ definiert durch:

$$\arccos(\cos x) = x$$
.

(c) Die Arcustangensfunktion ist für $-\frac{\pi}{2} < x < \frac{\pi}{2}$ definiert durch:

$$\arctan(\tan x) = x$$
.

Sätze:

- 1. $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- 2. Symmetrien trigonometrischer Funktionen:

$$\sin(\alpha) = \sin(\alpha + 2\pi)$$

$$\sin(\alpha) = \sin(\pi - \alpha)$$

$$\sin(\alpha) = \cos(\alpha - \frac{\pi}{2})$$

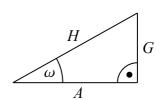
$$\sin(-\alpha) = -\sin(\alpha)$$

$$\cos(\alpha) = \cos(\alpha + 2\pi)$$
$$\cos(\alpha) = \cos(2\pi - \alpha)$$
$$\cos(\alpha) = \sin(\alpha + \frac{\pi}{2})$$
$$\cos(-\alpha) = \cos(\alpha)$$

$$tan(\alpha) = tan(\alpha + \pi)$$

$$tan(-\alpha) = -tan(\alpha)$$

3. Im rechtwinkligen Dreieck gilt:



$$\sin(\omega) = \frac{G}{H}$$
, $\cos(\omega) = \frac{A}{H}$ und $\tan(\omega) = \frac{G}{A}$.

4.	α	0°	30°	45°	60°	90°
	$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

- 5. Im Dreieck ABC mit Umkreisradius r gilt:
 - (a) Sinussatz:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r \,.$$

(b) Kosinussatz:

$$c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma).$$

6. Additions theoreme von trigonometrischen Funktionen:

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \sin(\alpha)\sin(\beta) \mp \cos(\alpha)\cos(\beta)$$

$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$$

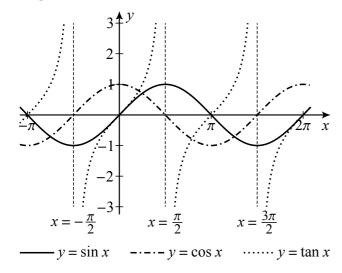
7. Doppelwinkelfunktionen:

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = 1 - 2\sin^2(\alpha) = 2\cos^2(\alpha) - 1$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)} = \frac{2\sin(\alpha)\cos(\alpha)}{\cos^2(\alpha) - \sin^2(\alpha)}$$

Diagramm:



7 Quadratische Gleichung

Sätze:

1. Lösungsformel der quaratischen Gleichung: Seien $a,b,c\in\mathbb{R}$ und $a\neq 0$, dann gilt, dass

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,.$$

die Lösungen der quadratischen Gleichung

$$ax^2 + bx + c = 0$$

sind.

2. Satz von Vieta: Seien $a, b, c \in \mathbb{R}$, $a \neq 0$ und x_1 und x_2 die Lösungen der quadratischen Gleichung

$$ax^2 + bx + c = 0$$

dann gilt:

$$x_1 + x_2 = -\frac{b}{a}$$
 und $x_1 \cdot x_2 = \frac{c}{a}$.

8 Potenzen

Definitionen:

1. Für $a \in \mathbb{R}$, $n \in \mathbb{N}$ ist:

$$a^{n+1} = a \cdot a^n$$
 und $a^1 = a$.

2. Für $a \in \mathbb{R}$, $a \neq 0$ und $n \in \mathbb{N}$ ist:

$$a^0 = 1$$
 und $a^{-n} = \frac{1}{a^n}$.

3. Für $a \in \mathbb{R}$, a > 0, $p \in \mathbb{Z}$, $q \in \mathbb{N}$ ist:

$$a^{\frac{p}{q}} = \sqrt[q]{a^p}$$
.

4. Für $n \in \mathbb{N}$ ist die nte-Wurzel von $a \in \mathbb{R}$ definiert durch:

$$x = \sqrt[n]{a} \Leftrightarrow x^n = a \text{ und } x \ge 0.$$

5. Betrag einer reellen Zahl: Sei $a \in \mathbb{R}$, dann gilt:

$$|a| = \sqrt{a^2} = \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0. \end{cases}$$

Regeln zum Potenzrechnen:

1.
$$(a \cdot b)^n = a^n \cdot b^n$$

$$2. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$3. \ a^m \cdot a^n = a^{m+n}$$

$$4. \ \frac{a^m}{a^n} = a^{m-n}$$

5.
$$(a^m)^n = a^{m \cdot n}$$

9 Logarithmus

Definitionen:

1. (a) Definition der Logarithmusfunktion als Umkehrfunktion zur Exponentialfunktion: Für $a,b\in\mathbb{R},\ a,b>0$ und $a\neq 1$ gilt:

$$a^x = b \Leftrightarrow x = \log_a(b)$$
.

(b) Integral definition des natürlichen Logarithmus: Für $x \in \mathbb{R}$ und x > 0 gilt:

$$\ln(x) = \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t.$$

2. Die Eulersche Zahl e ist definiert durch:

$$ln(e) = 1$$
.

Sätze:

1. Seien $a, b \in \mathbb{R}$, a, b > 0 und $a \neq 1$, dann gilt:

$$\log_a(b) = \frac{\log_{10}(b)}{\log_{10}(a)} = \frac{\ln(b)}{\ln(a)}.$$

2. Sei $x \in \mathbb{R}$ und x > 0, dann gilt:

$$\ln(x) = \log_e(x).$$

- 3. Seien $a, u, v, r \in \mathbb{R}$, a, u, v > 0 und $a \neq 1$, dann gilt:
 - (a) $\log_a(u \cdot v) = \log_a(u) + \log_a(v)$,
 - (b) $\log_a\left(\frac{u}{v}\right) = \log_a(u) \log_a(v)$,
 - (c) $\log_a(u^r) = r \cdot \log_a(u)$.

10 Folgen und Reihen

10.1 Grenzwert einer Zahlenfolge Definitionen:

1. Sei Eine reelle Zahlenfolge ist eine Abbildung von $\mathbb N$ auf $\mathbb R$.

2. Sei $n \in \mathbb{N}$. Eine reelle Zahlenfolge a_n heisst konvergent gegen einen Grenzwert $a \in \mathbb{R}$, wenn für jedes $\varepsilon > 0$ ein $N(\varepsilon) \in \mathbb{N}$ existiert, so dass gilt:

$$|a_n - a| < \varepsilon$$
 für alle $n > N(\varepsilon)$.

3. Eine Reihe ist als Grenzwert einer Partialsummenfolge definiert:

$$\sum_{i=1}^{\infty} a_i = \lim_{N \to \infty} \sum_{i=1}^{N} a_i.$$

Sätze zum Rechnen mit Grenzwerten:

Seien a_n und b_n zwei konvergente Folgen reeller Zahlen, dann gelten die folgenden Sätze:

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$
.

2.
$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$
.

3. Sei $\lim_{n\to\infty} b_n \neq 0$, dann gilt:

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \,.$$

10.2 Arithmetische Zahlenfolgen

Definition: Sei $n \in \mathbb{N}$ und $d \in \mathbb{R}$. Eine Zahlenfolge a_n heisst arithmetisch, wenn gilt:

$$a_{n+1} = a_n + d.$$

Sätze: Sei $n \in \mathbb{N}$, $d \in \mathbb{R}$ und a_n eine arithmetische Zahlenfolge mit $a_{n+1} = a_n + d$, dann gilt:

1.
$$a_n = a_1 + (n-1) \cdot d$$
.

2.
$$s_n = \sum_{i=1}^n a_i = \frac{1}{2} \cdot n \cdot (a_1 + a_n)$$
.

10.3 Geometrische Zahlenfolgen

Definition: Sei $n \in \mathbb{N}$ und $q \in \mathbb{R}$. Eine Zahlenfolge a_n heisst geometrisch, wenn gilt:

$$a_{n+1} = a_n \cdot q .$$

Sätze: Sei $n \in \mathbb{N}$, $q \in \mathbb{R}$ und a_n eine geometrische Zahlenfolge mit $a_{n+1} = a_n \cdot q$, dann gilt:

1.
$$a_n = a_1 \cdot q^{n-1}$$
.

2.
$$s_n = \sum_{i=1}^n a_i = a_1 \cdot \frac{1-q^n}{1-q}$$
.

3. Für
$$|q| < 1$$
 gilt: $s = \sum_{i=1}^{\infty} a_i = \frac{a_1}{1-q}$.

Spezielle Summen:

1.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Spezielle Reihen:

$$1. \sum_{i=1}^{\infty} \frac{1}{i} = \infty$$

$$2. \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$$

11 Funktionen

Definition: Eine reelle Funktion ist eine Abbildung (eindeutige Zuordnung) von \mathbb{R} auf \mathbb{R} .

Gerade und ungerade Funktionen:

1. Für gerade Funktionen gilt:

$$f(x) = f(-x) .$$

Der Graph einer geraden Funktion ist symmetrisch zur y-Achse (achsensymmetrisch).

2. Für ungerade Funktionen gilt:

$$f(x) = -f(-x) .$$

Der Graph einer ungeraden Funktion ist symmetrisch zum Ursprung des Koordinatensystems (punktsymmetrisch).

Orts- und Skalentransformation

- 1. Ortstransformation: Verschiebung des G_f (Graphen von f)
 - (a) in x-Richtung um a > 0 Einheiten nach rechts:

$$y = f(x) \rightarrow y = f(x - a)$$

(b) in y-Richtung um a > 0 Einheiten nach oben:

$$y = f(x) \rightarrow y = f(x) + a$$

- 2. Skalentransformation: Streckung des G_f
 - (a) an der x-Achse mit Streckungsfaktor k:

$$y = f(x) \rightarrow y = k \cdot f(x)$$

(b) an der y-Achse mit Streckungsfaktor k:

$$y = f(x) \rightarrow y = f(k \cdot x)$$

12 Grenzwerte von Funktionen

Definitionen: Sei f(x) eine reelle Funktion.

1. $\lim_{x\to a} f(x) = b$ heisst:

Für jede Folge x_n (mit $x_n \neq a$), die gegen $a \in \mathbb{R}$ strebt, strebt die Bildfolge $f(x_n)$ gegen b.

 $\lim_{x\to a} f(x)$ wird Grenzwert von f(x) an der Stelle x=a genannt.

2. $\lim_{x \searrow a} f(x) = b$ heisst:

Für jede Folge x_n (mit $x_n > a$), die fallend gegen $a \in \mathbb{R}$ strebt, strebt die Bildfolge $f(x_n)$ gegen b.

 $\lim_{x \searrow a} f(x)$ wird rechtsseitiger Grenzwert von f(x) an der Stelle x = a genannt.

3. $\lim_{x \nearrow a} f(x) = b$ heisst:

Für jede Folge x_n (mit $x_n < a$), die wachsend gegen $a \in \mathbb{R}$ strebt, strebt die Bildfolge $f(x_n)$ gegen b.

 $\lim_{x \nearrow a} f(x)$ wird linksseitiger Grenzwert von f(x) an der Stelle x = a genannt.

4. $\lim_{x\to\infty} f(x)$ und $\lim_{x\to-\infty} f(x)$ werden die Grenzwerte von f(x) für x gegen unendlich und minus unendlich genannt.

Dominanzregeln: Seien $r, x \in \mathbb{R}$:

$$1. \lim_{x \to \infty} \frac{x^r}{e^x} = 0$$

2.
$$\lim_{x \to \infty} \frac{\ln(x)}{x^r} = 0$$
, $r > 0$

3.
$$\lim_{x \to 0} x^r \cdot \ln(x) = 0$$
, $r > 0$

Spezielle Grenzwerte: Sei $x \in \mathbb{R}$:

$$1. \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

2.
$$\lim_{x \to \infty} \left(1 + \frac{\lambda}{x} \right)^x = e^{\lambda}, \quad \lambda \in \mathbb{R}$$

12.1 Stetigkeit einer Funktion

Definition:

1. Eine Funktion f heisst stetig an einer Stelle Stelle x = a, wenn

$$\lim_{x \to a} f(x) = f(a)$$

ist. (Dabei wird vorausgesetzt, dass a ein Häufungspunkt des Definitionsbereichs von f ist und der Grenzwert $\lim_{x\to a} f(x)$ existiert.)

2. Eine Funktion heisst stetig auf einem Intervall, wenn sie an jeder Stelle des Intervalls stetig ist.

Satz: Rationale Funktionen, Betrags-, Winkel-, Exponential- und Logarithmusfunktionen sind an jeder Stelle ihres Definitionsbereichs stetig.

12.2 Asymptoten

Definitionen:

1. Die Gerade x=a heisst senkrechte Asymptote der Funktion f(x), wenn der rechtsoder linksseitige Grenzwert von f an der Stelle x=a gleich $+\infty$ oder $-\infty$ ist.

- 2. Die Gerade y=a heisst waagrechte Asymptote der Funktion f(x), wenn $\lim_{x\to\infty} f(x)=a$ oder $\lim_{x\to-\infty} f(x)=a$ ist.
- 3. Die Gerade y = ax + b heisst schräge Asymptote der Funktion f(x), wenn

$$\lim_{x \to \infty} f(x) - (ax + b) = 0$$

oder

$$\lim_{x \to -\infty} f(x) - (ax + b) = 0$$

ist.

Sätze: Für rationale Funktionen gelten die folgenden Sätze:

- 1. Zählergrad

 Nennergrad $\Rightarrow x\text{-Achse}$ ist Asymptote
- 2. Zählergrad = Nennergrad \Rightarrow waagrechte Asymptote
- 3. Zählergrad = Nennergrad +1 \Rightarrow schräge Asymptote
- 4. Zählergrad > Nennergrad +1 \Rightarrow keine Asymptote

12.3 Ableitung einer Funktion

Definition: Eine Funktion f heisst differenzierbar an der Stelle x, falls der Grenzwert

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

existiert. Der Grenzwert f'(x) heisst Ableitung oder Differentialquotient der Funktion f an der Stelle x.

Sätze: Regeln zum Ableiten:

- 1. Linearität der Ableitung:
 - (a) (f(x) + g(x))' = f'(x) + g'(x)
 - (b) $(c \cdot f(x))' = c \cdot f'(x)$
- 2. Produktregel: $(f \cdot q)' = f' \cdot q + f \cdot q'$
- 3. Quotienten
regel: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$
- 4. Kettenregel: $(f(u(x))' = f'(u) \cdot u'(x))$

Ableitungen von speziellen Funktionen:

- 1. Sei $n \in \mathbb{R}$, dann gilt: $(x^n)' = n \cdot x^{n-1}$.
- 2. $\sin'(x) = \cos(x)$ $\cos'(x) = -\sin(x)$ $\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
- 3. $(e^x)' = e^x$
- 4. $\ln'(x) = \frac{1}{x} \text{ für } x > 0$

12.4 Funktionsdiskussion

Die Bedingungen für spezielle Stellen x einer reellen, differenzierbaren Funktion f(x) sind:

- 1. Nullstelle: f(x) = 0.
- 2. Horizontal stelle: f'(x) = 0.
- 3. Extremalstellen:
 - (a) Hinreichende Bedingung für ein lokales Maximum: f'(x) = 0, f''(x) < 0.
 - (b) Hinreichende Bedingung für lokales Minimum: f'(x) = 0, f''(x) > 0.
- 4. Hinreichende Bedingung für eine Wendestelle: f''(x) = 0, $f'''(x) \neq 0$.
- 5. Terrassenstelle: eine Wendestelle, die auch eine Horizontalstelle ist.

12.5 Newton-Verfahren

Sei $n \in \mathbb{N}, f$ eine stetig differenzierbare Funktion und

$$f(x) = 0,$$

dann kann x näherungsweise mit Hilfe eines guten ersten Schätzwertes x_1 und der Beziehung

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

iterativ berechnet werden.

13 Integration

13.1 Unbestimmte Integration

Definition Das unbestimmte Integral einer Funktion f ist als Menge der Stammfunktionen von f definiert:

$$\int f(x) \, dx = F(x) + C \quad \Leftrightarrow \quad F'(x) = f(x).$$

13.2 Bestimmtes Integral

Definition des Riemannschen Integrals: Sei $n \in \mathbb{N}$, $i \in \{1, ..., n\}$,

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

und f(x) eine auf dem Intervall [a, b] beschränkte Funktion, dann heissen

$$U_n = \sum_{i=1}^n m_i \cdot \triangle x_i$$
 und $O_n = \sum_{i=1}^n M_i \cdot \triangle x_i$

die Unter- und Obersumme der Funktion f auf dem Intervall [a,b], wobei m_i das Minimum und M_i das Maximum der Funktion f auf dem Unterintervall $[x_{i-1}, x_i]$ bezeichnet und $\Delta x_i = x_i - x_{i-1}$ die Breite des Unterintervalls $[x_{i-1}, x_i]$ ist.

Die Grenzwerte von Unter- und Obersumme werden nun gebildet, indem immer mehr Stellen x_i eingefügt werden, so dass die Breiten Δx_i aller Unterintervalle $[x_{i-1}, x_i]$ gegen null streben. Gilt nun, dass der Grenzwert der Untersumme gleich dem Grenzwert der Obersumme ist:

$$\lim_{\Delta x_i \to 0} U_n = \lim_{\Delta x_i \to 0} O_n \,,$$

dann wird dieser Grenzwert als das bestimmte Integral der Funktion f von der Stelle a bis zur Stelle b bezeichnet:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{\Delta x_i \to 0} U_n \, .$$

Sätze:

1. Die Funktion f sei auf dem Intevall [a,b] integrierbar, dann gilt:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^{n} f(x_i) \cdot \Delta x_i.$$

2. Fundamentalsatz der Analysis:

f sei eine auf dem Intervall [a,b] stetige Funktion und F eine Stammfunkton von f, dann gilt:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a) \, .$$

Definitionen:

1. Die Funktion f sei auf dem Intervall [a, b] integrierbar, dann gilt:

$$\int_{b}^{a} f(x) \, \mathrm{d}x = -\int_{a}^{b} f(x) \, \mathrm{d}x.$$

2. Uneigentliche Integrale: Wir betrachten den Fall, dass eine Integrationsgrenze unendlich ist.

(a)
$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

(b)
$$\int_{-\infty}^{b} f(x) dx = \lim_{R \to -\infty} \int_{R}^{b} f(x) dx$$

Sätze:

1. Linearität des Integrals:

(a)
$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

(b)
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

2. Partielle Integration:

$$\int_{a}^{b} u \cdot v' \, dx = u \cdot v \Big|_{a}^{b} - \int_{a}^{b} u' \cdot v \, dx$$

3. Integration durch Substitution:

$$\int_{u(a)}^{u(b)} f(x) dx = \int_{a}^{b} f(u(t)) \cdot u'(t) dt$$

oder

$$\int_{a}^{b} f(g(x)) \cdot g'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du$$

Integrale von speziellen Funktionen:

1. Sei $n \in \mathbb{R}$ und $n \neq -1$, dann gilt:

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C \, .$$

2. $\int \sin(x) dx = -\cos(x) + C$

3.
$$\int \cos(x) \, \mathrm{d}x = \sin(x) + C$$

4.
$$\int \tan(x) dx = -\ln|\cos(x)| + C$$

$$5. \int e^x \, \mathrm{d}x = e^x + C$$

6.
$$\int \frac{1}{x} dx = \ln|x| + C$$

7.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

14 Statistik

Definitionen: Sei $n \in \mathbb{N}$ und $i \in \{1, ..., n\}$: Für die Messwerte: $x_1, x_2, ..., x_n \in \mathbb{R}$ gilt:

- 1. Der Modus der Messwerte ist derjenige Messwert, der am häufigsten auftritt.
- 2. Der Median der Messwerte ist definiert als:

$$\bar{x}_{med} = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{für } n \text{ ungerade} \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & \text{für } n \text{ gerade,} \end{cases}$$

wobei $x_{(1)}, x_{(2)}, ..., x_{(n)}$, die nach ihrer Grösse sortierten Messwerte sind.

3. Das arithmetische Mittel der Messwerte ist:

$$\bar{x}_{arithm} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 \dots + x_n}{n}.$$

Treten die Messwerte x_i mit den Häufigkeiten f_i auf, gilt:

$$\bar{x}_{arithm} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\sum_{i=1}^{n} f_i}.$$

4. Die (unkorrigierte) Varianz der Messwerte ist definiert als:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_{arithm})^2.$$

- 5. Die (unkorrigierte) Standardabweichung σ der Messwerte ist definiert als die Wurzel der (unkorrigierten) Varianz: $\sigma = \sqrt{\sigma^2}$.
- 6. Einfache lineare Regression fittet eine Gerade durch eine Menge von Punkten (x_i/y_i) , so dass die Summe der quadrierten Residuen

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (mx_i + q - y_i)^2$$

minimal ist. Die Steigung der Regressionsgeraden y = mx + q ist:

$$m = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2}\,,$$

und für den y-Achsenabschnitt gilt:

$$q = \overline{y} - m\overline{x}.$$

Für den Korrelationskoeffizient der x- und y-Werte gilt:

$$r_{xy} = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\sqrt{\left(\overline{x^2} - \overline{x}^2\right) \cdot \left(\overline{y^2} - \overline{y}^2\right)}},$$

wobei \overline{x} , \overline{y} , $\overline{x^2}$, $\overline{y^2}$ und \overline{xy} die arithmetischen Mittelwerte der x-, y-, x^2 -, y^2 - und xy-Werte sind.

15 Kombinatorik

Definitionen:

1. Die Fakultät einer Zahl $n \in \mathbb{N}$ ist definiert als:

$$0! = 1, \quad n! = n \cdot (n-1)!, \quad n \in \mathbb{N}.$$

2. Seien $k, n \in \mathbb{N}$. Der Binominalkoeffizient $\binom{n}{k}$ beschreibt die Anzahl möglicher Untermengen von k Elementen, die aus einer Menge von n Elementen gebildet werden können:

$$\binom{n}{k} = \begin{cases} \frac{n!}{k! \cdot (n-k)!}, & \text{falls } k \leq n \\ 0, & \text{sonst.} \end{cases}$$

Binomischer Lehrsatz: Seien $a, b \in \mathbb{R}$, $a + b \neq 0$ und $k, n \in \mathbb{N}_0$, dann gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}.$$

Grundlegende Zählprinzipien:

1. **Multiplikationsregel:** Wenn zu jedem der n_1 möglichen Ergebnisse eines ersten Zufallsexperiment ein zweites Zufallsexperiment je n_2 mögliche Ergebnisse hat ... und ein r-tes je n_r mögliche Ergebnisse hat, dann ist die Anzahl der insgesamt möglichen Ergebnisse:

$$n_1 \cdot n_2 \cdot \ldots \cdot n_r$$
.

2. Zähltafel für eine Stichprobe von k Elementen aus einer Menge von n Elementen:

	geordnet	ungeordnet			
ohne Wieder-	n!	$\binom{n}{}$			
holungen	$\overline{(n-k)!}$	(k)			
mit Wieder-	n^k	(n+k-1)			
holungen	71	$\left(\begin{array}{cc} k \end{array}\right)$			

16 Wahrscheinlichkeitsrechnung

Definitionen:

- 1. Der Ergebnisraum (Stichprobenraum) ist die Menge aller möglichen Ergebnisse eines Zufallsexperiments und ein Ereignis ist eine Untermenge des Ergebnisraums.
- 2. Definition der Laplace-Wahrscheinlichkeit: Die Wahrscheinlichket P eines Ereignisses A ist:

$$P(A) = \frac{|A|}{|S|}$$

 $P(A) = \frac{\text{Anzahl der für } A \text{ günstigen Ergebnisse}}{\text{Anzahl der in } S \text{ möglichen Ergebnisse}}$

Diese Definition kann nur bei solchen Zufallsexperimenten angewandt werden, deren Ergebnisraum nur endlich viele, gleich wahrscheinliche Ergebnisse enthält.

- 3. **Definition der Wahrscheinlichkeit:** Ein Zufallsraum besteht aus einem Ergebnisraum S und einer Wahrscheinlichkeitsfunktion P. Die Funktion P weist einem Ereignis $A \subseteq S$ einen Funktionswert P(A) zu. Der Wert von P(A) ist eine reelle Zahl zwischen 0 und 1: $0 \le P(A) \le 1$. Für die Funktion P müssen die folgenden Axiome gelten:
 - (a) $P(\emptyset) = 0 \text{ und } P(S) = 1$.
 - (b) Für disjunkte Ereignisse A und B gilt:

$$P(A \cup B) = P(A) + P(B).$$

(Das Axiom (b) wurde auf den Fall eingeschränkt, dass der Ergebnisraum S nur endlich viele Ergebnisse enthält.)

Sätze:

1. Sei A^c das zu A komplementäre Ereignis (Gegenereignis), dann gilt:

$$P(A^c) = 1 - P(A).$$

- 2. Sei $A \subseteq B$, dann gilt: $P(A) \le P(B)$.
- 3. Sei $A, B \subseteq S$, dann gilt:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Definitionen:

1. Die Ereignisse A und B sind (stochastisch) unabhängig, wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B) .$$

2. Zwei Ereignisse A und B heissen disjunkt, wenn gilt:

$$A \cap B = \emptyset$$
.

16.1 Bedingte Wahrscheinlichkeit

Definition: Seien A und B Ereignisse und P(B) > 0. Die Wahrscheinlichkeit von A, vorausgesetzt B (dass A eintritt unter der Bedingung, dass B zutrifft) ist definiert als:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Sätze: A und B seien Ereignisse.

1. A und B seien unabhängig, dann gilt:

$$P(A|B) = P(A)$$
.

2. Multiplikationssatz:

$$P(A \cap B) = P(A|B) \cdot P(B) .$$

3. Gesetz der totalen Wahrscheinlichkeit: Sei $n \in \mathbb{N}, i, j \in \{1, ..., n\}, B_1, ..., B_n$ mit $P(B_i) > 0$ eine Partition des Ergebnisraums S (d.h., $\bigcup_{i=1}^{n} B_i = S$ und $B_i \cap B_j = \emptyset$ für $i \neq j$), dann gilt:

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i).$$

4. Satz von Bayes:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

17 Zufallsvariablen

Definitionen:

- 1. Eine Zufallsvariable (X) ist eine Funktion, die den Ergebnisraum (S) eines Zufallsexperiments auf die Menge der reellen Zahlen (\mathbb{R}) abbildet.
- 2. Sei $i, j, n \in \mathbb{N}$: Eine Zufallsvariable X heisst diskret, wenn es nur endlich viele reelle Werte $a_1, ..., a_n$ oder nur abzählbar unendlich viele reelle Werte $a_1, ..., a_i, a_{i+1}, ...$ gibt, so dass $P(X = a_i) > 0$ ist.
- 3. Die Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariablen X ist definiert als:

$$p_X(x) = P(X = x)$$

und die (kumulative) Verteilungsfunktion von X ist definiert als:

$$F_X(x) = P(X \le x)$$
.

- 4. Eine Zufallsvariable X heisst stetig oder kontinuierlich, wenn die Verteilungsfunktion von X stetig ist.
- 5. Die (kumulative) Verteilungsfunktion einer stetigen Zufallsvariablen X ist definiert durch:

$$F_X(x) = P(X \le x)$$
.

und die Wahrscheinlichkeitsdichtefunktion von X ist definiert als:

$$f_X(x) = F_X'(x) .$$

Es gilt:

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt.$$

- 6. Der Erwartungswert einer Zufallsvariablen X ist definiert als:
 - (a) diskreter Fall:

$$E(X) = \sum_{i} x_i \cdot P(X = x_i).$$

(b) stetiger Fall:

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx.$$

7. Die Varianz einer Zufallsvariablen X ist definiert als:

$$Var(X) = E((X - EX)^2) = E(X^2) - (EX)^2$$

und die Standardabweichung von X ist definert als:

$$SD(X) = \sqrt{Var(X)}$$
.

17.1 Spezielle Zufallsvariablen

1. Bernoulliverteilung:

Sei $X \sim \text{Bern}(p)$ mit 0 , dann gilt:

$$P(X=0) = 1 - p \quad \text{und} \quad P(X=1) = p,$$

$$E(X) = P(X=1) = p,$$

$$Var(X) = p \cdot (1 - p).$$

2. Binomialverteilung:

Sei $X \sim \text{Bin}(n, p)$ mit $n \in \mathbb{N}$, $k \in \{0, 1, ..., n\}$ und 0 , dann gilt:

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k},$$

$$E(X) = n \cdot p$$
 und $Var(X) = n \cdot p \cdot (1 - p)$.

3. Poissonverteilung:

Sei $X \sim \text{Pois}(\lambda)$ mit $\lambda \in \mathbb{R}$, $\lambda > 0$ und $k \in \mathbb{N}_0$, dann gilt:

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!},$$

$$E(X) = \lambda$$
 und $Var(X) = \lambda$.

4. Standardnormalverteilung:

Sei $Z \sim \mathcal{N}(0,1)$ und $z \in \mathbb{R}$, dann gilt:

$$f(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{z^2}{2}},$$

$$\Phi(z) = P(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt,$$

$$\Phi(-z) = 1 - \Phi(z),$$

$$E(Z) = 0$$
 und $Var(Z) = 1$.

5. Normalverteilung:

Sei $X = \mu + \sigma Z$, $Z \sim \mathcal{N}(0, 1)$, $x \in \mathbb{R}$, $\mu \in \mathbb{R}$, und $\sigma > 0$. Dann ist $X \sim \mathcal{N}(\mu, \sigma^2)$ normal-verteilt und es gilt:

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

$$F(x) = P(X \le x)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{x - \mu}{\sigma}\right),$$

$$E(X) = \mu$$
 und $Var(X) = \sigma^2$.

68 - 95 - 99.7 %-Regel:

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, dann gilt:

$$P(|X - \mu| \le \sigma) \approx 68 \%,$$

 $P(|X - \mu| \le 2\sigma) \approx 95 \%,$
 $P(|X - \mu| \le 3\sigma) \approx 99.7 \%.$

18 Analytische Geometrie und Vektorgeometrie

Geometrie in der Ebene:

1. Gleichung einer Geraden, die nicht parallel zur y-Achse liegt:

$$y = m \cdot x + q$$
 mit $m, q \in \mathbb{R}$

2. Gleichung einer Geraden, die parallel zur y-Achse liegt:

$$x = p$$
 mit $p \in \mathbb{R}$

3. Sei $m_g \neq 0$ die Steigung einer Geraden g, dann gilt für die Steigung m_n einer Normalen n zur Geraden g:

$$m_n = -\frac{1}{m_g} \,.$$

4. Gleichung des Kreises mit dem Zentrum (u, v) und dem Radius r:

$$(x-u)^2 + (y-v)^2 = r^2$$

- 5. Gleichung einer Parabel:
 - (a) Standardform der Gleichung einer Parabel:

$$y = ax^2 + bx + c$$
 mit $a, b, c \in \mathbb{R}$

(b) Scheitelpunktsform der Gleichung einer Parabel, die den Scheitelpunkt (u, v) hat:

$$y - v = a \cdot (x - u)^2, \ a, u, v \in \mathbb{R}$$

Geometrie im Raum:

1. Parameterform der Geraden, die durch die Punkte $A(a_1, a_2, a_3)$ und $B(b_1, b_2, b_3)$ geht:

$$\overrightarrow{OA} + \lambda \cdot \overrightarrow{AB} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix},$$

wobei ${\cal O}$ der Ursprung des Koordinatensystems ist.

- 2. Parameterform und Koordinatengleichung der Ebene, die die Punkte $A(a_1, a_2, a_3)$, $B(b_1, b_2, b_3)$ und $C(c_1, c_2, c_3)$ enthält. O ist der Ursprung des Koordinatensystems.
 - (a) Parameterform der Ebene:

$$\overrightarrow{OA} + \lambda \cdot \overrightarrow{AB} + \mu \cdot \overrightarrow{AC}$$

$$= \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ a_3 - a_3 \end{pmatrix} + \mu \begin{pmatrix} c_1 - a_1 \\ c_2 - a_2 \\ c_3 - a_3 \end{pmatrix}.$$

(b) Koordinatengleichung der Ebene:

$$ax + by + cz + d = 0,$$

wobei $\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ ein Normalenvektor der Ebene ist.

3. Gleichung der Sphäre mit dem Zentrum (u, v, w) und dem Radius r:

$$(x-u)^2 + (y-v)^2 + (z-w)^2 = r^2$$

Definitionen: Für Vektoren aus \mathbb{R}^3 gilt:

- 1. \vec{a} kann in der Form $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ mit $a_1, a_2, a_3 \in \mathbb{R}$ geschrieben werden.
- 2. Vielfaches eines Vektors: Sei $\lambda \in \mathbb{R}$ und $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, dann gilt:

$$\lambda \vec{a} = \lambda \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \lambda a_3 \end{pmatrix}.$$

3. Addition von zwei Vektoren:

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

- 4. Winkel zwischen zwei Vektoren:
 - (a) Der Nullvektor $(\vec{0})$ steht senkrecht auf jedem anderen Vektor.
 - (b) Für $\vec{a}, \vec{b} \neq \vec{0}$ ist der Winkel zwischen \vec{a} und \vec{b} gleich dem Winkel zwischen zwei Repräsentanten von \vec{a} und \vec{b} , die den gleichen Anfangspunkt haben.

5. Der Betrag von $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ ist definiert als:

$$|\vec{a}| = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}$$
.

6. Das Skalarprodukt zweier Vektoren \vec{a} und \vec{b} ist definiert als:

$$\vec{a} \odot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \gamma$$
,

wobei γ der Winkel zwischen \vec{a} und \vec{b} ist.

- 7. Das Vektorprodukt $\vec{a} \times \vec{b}$ zweier (geordneter) Vektoren \vec{a} und \vec{b} wird durch die folgenden Bedingungen definiert:
 - (a) Der $\vec{a} \times \vec{b}$ steht senkrecht auf \vec{a} und \vec{b} .
 - (b) Die Vektoren \vec{a} , \vec{b} und $\vec{a} \times \vec{b}$ bilden in dieser Reihenfolge eine Rechtssystem.
 - (c) $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \gamma$, wobei γ der Winkel zwischen \vec{a} und \vec{b} ist.
- 8. Das Spatprodukt der (geordneten) Vektoren \vec{a} , \vec{b} und \vec{c} ist definiert als:

$$\left(\vec{a}\times\vec{b}\right)\odot\vec{c}$$
.

Sätze:

1. Seien $A(a_1, a_2, a_3)$ und $B(b_1, b_2, b_3)$ zwei Punkte, dann gilt:

$$\overrightarrow{AB} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

2. Seien $A(a_1, a_2, a_3)$ und $B(b_1, b_2, b_3)$ zwei Punkte und $M(m_1, m_2, m_3)$ der Mittelpunkt der Strecke AB, dann gilt:

$$\begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \frac{1}{2} \cdot \left(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \right).$$

3. Seien $A(a_1, a_2, a_3)$, $B(b_1, b_2, b_3)$ und $C(c_1, c_2, c_3)$ drei Punkte und $S(s_1, s_2, s_3)$ der Schwerpunkt des Dreiecks ABC, dann gilt:

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = \frac{1}{3} \cdot \left(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \right).$$

4. Der Abstand des Punktes $P(p_1, p_2, p_3)$ von einer Ebene Ω ist:

$$d(P,\Omega) = \frac{\left| \left(\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \right) \odot \vec{n} \right|}{|\vec{n}|},$$

wobei der Punkt $A(a_1, a_2, a_3)$ in Ω liegt und \vec{n} der Normalenvektor von Ω ist.

5. Sei A der Flächeninhalt des von den Vektoren \vec{a} und \vec{b} aufgespannten Parallelogramms, dann gilt:

$$A = |\vec{a} \times \vec{b}|$$
.

6. Sei V das Volumen des von den Vektoren \vec{a} , \vec{b} und \vec{c} aufgespannten Spats, dann gilt:

$$V = \left| \left(\vec{a} \times \vec{b} \right) \odot \vec{c} \right| \,.$$

7. Sei $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, dann gilt:

$$\vec{a} \odot \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \odot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \sum_{i=1}^3 a_i \cdot b_i$$
.

8. Für das Skalarprodukt von Vektoren gilt das Kommutativgesetz:

$$\vec{a} \odot \vec{b} = \vec{b} \odot \vec{a}$$
.

9. Für das Skalarprodukt von Vektoren gilt das Distributivgesetz:

$$\vec{a} \odot (\vec{b} + \vec{c}) = \vec{a} \odot \vec{b} + \vec{a} \odot \vec{c}$$
.

10. Sei $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, dann gilt:

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

11. Für das Vektorprodukt gilt das Distributivgesetz:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

12. Das Vektorprodukt ist antikommutativ:

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \, .$$

13. Für das Spatprodukt der Vektoren \vec{a} , \vec{b} und \vec{c} gilt:

$$\left(\vec{a} \times \vec{b} \right) \odot \vec{c} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} .$$

19 Wertetabelle der Verteilungsf. der Standardnormalvert.

z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.00	0.5000	0.70	0.7580	1.40	0.9192	2.10	0.9821	2.80	0.9974	3.50	0.9998
0.01	0.5040	0.71	0.7611	1.41	0.9207	2.11	0.9826	2.81	0.9975	3.51	0.9998
0.02	0.5080	0.72	0.7642	1.42	0.9222	2.12	0.9830	2.82	0.9976	3.52	0.9998
0.03	0.5120	0.73	0.7673	1.43	0.9236	2.13	0.9834	2.83	0.9977	3.53	0.9998
0.04	0.5160	0.74	0.7704	1.44	0.9251	2.14	0.9838	2.84	0.9977	3.54	0.9998
0.05	0.5199	0.75	0.7734	1.45	0.9265	2.15	0.9842	2.85	0.9978	3.55	0.9998
0.06	0.5239	0.76	0.7764	1.46	0.9279	2.16	0.9846	2.86	0.9979	3.56	0.9998
0.07	0.5279	0.77	0.7794	1.47	0.9292	2.17	0.9850	2.87	0.9979	3.57	0.9998
0.08	0.5319	0.78	0.7823	1.48	0.9306	2.18	0.9854	2.88	0.9980	3.58	0.9998
0.09	0.5359	0.79	0.7852	1.49	0.9319	2.19	0.9857	2.89	0.9981	3.59	0.9998
0.10	0.5398	0.80	0.7881	1.50	0.9332	2.20	0.9861	2.90	0.9981	3.60	0.9998
0.11	0.5438	0.81	0.7910	1.51	0.9345	2.21	0.9864	2.91	0.9982	3.61	0.9998
0.12	0.5478	0.82	0.7939	1.52	0.9357	2.22	0.9868	2.92	0.9982	3.62	0.9999
0.13	0.5517	0.83	0.7967	1.53	0.9370	2.23	0.9871	2.93	0.9983	3.63	0.9999
0.14	0.5557	0.84	0.7995	1.54	0.9382	2.24	0.9875	2.94	0.9984	3.64	0.9999
0.15	0.5596	0.85	0.8023	1.55	0.9394	2.25	0.9878	2.95	0.9984	3.65	0.9999
0.16	0.5636	0.86	0.8051	1.56	0.9406	2.26	0.9881	2.96	0.9985	3.66	0.9999
		0.87	0.8078	1.57				$\frac{2.30}{2.97}$			0.9999
0.17	0.5675				0.9418	2.27	0.9884		0.9985	3.67	
0.18	0.5714	0.88	0.8106	1.58	0.9429	2.28	0.9887	2.98	0.9986	3.68	0.9999
0.19	0.5753	0.89	0.8133	1.59	0.9441	2.29	0.9890	2.99	0.9986	3.69	0.9999
0.20	0.5793	0.90	0.8159	1.60	0.9452	2.30	0.9893	3.00	0.9987	3.70	0.9999
0.21	0.5832	0.91	0.8186	1.61	0.9463	2.31	0.9896	3.01	0.9987	3.71	0.9999
0.21	0.5871	0.92	0.8212	1.62	0.9474	2.32	0.9898	3.02	0.9987	3.72	0.9999
0.23	0.5910	0.93	0.8238	1.63	0.9484	2.33	0.9901	3.03	0.9988	3.73	0.9999
0.24	0.5948	0.94	0.8264	1.64	0.9495	2.34	0.9904	3.04	0.9988	3.74	0.9999
0.25	0.5987	0.95	0.8289	1.65	0.9505	2.35	0.9906	3.05	0.9989	3.75	0.9999
0.26	0.6026	0.96	0.8315	1.66	0.9515	2.36	0.9909	3.06	0.9989	3.76	0.9999
0.27	0.6064	0.97	0.8340	1.67	0.9525	2.37	0.9911	3.07	0.9989	3.77	0.9999
0.28	0.6103	0.98	0.8365	1.68	0.9535	2.38	0.9913	3.08	0.9990	3.78	0.9999
0.29	0.6141	0.99	0.8389	1.69	0.9545	2.39	0.9916	3.09	0.9990	3.79	0.9999
0.30	0.6179	1.00	0.8413	1.70	0.9554	2.40	0.9918	3.10	0.9990	3.80	0.9999
0.31	0.6217	1.01	0.8438	1.71	0.9564	2.41	0.9920	3.11	0.9991	3.81	0.9999
0.32	0.6255	1.02	0.8461	1.72	0.9573	2.42	0.9922	3.12	0.9991	3.82	0.9999
0.33		1.02		1.73						3.83	0.9999
	0.6293		0.8485		0.9582	2.43	0.9925	3.13	0.9991		
0.34	0.6331	1.04	0.8508	1.74	0.9591	2.44	0.9927	3.14	0.9992	3.84	0.9999
0.35	0.6368	1.05	0.8531	1.75	0.9599	2.45	0.9929	3.15	0.9992	3.85	0.9999
0.36	0.6406	1.06	0.8554	1.76	0.9608	2.46	0.9931	3.16	0.9992	3.86	0.9999
0.37	0.6443	1.07	0.8577	1.77	0.9616	2.47	0.9932	3.17	0.9992	3.87	0.9999
0.38	0.6480	1.08	0.8599	1.78	0.9625	2.48	0.9934	3.18	0.9993	3.88	0.9999
				1.79			0.9936	3.19			
0.39	0.6517	1.09	0.8621		0.9633	2.49			0.9993	3.89	0.9999
0.40	0.6554	1.10	0.8643	1.80	0.9641	2.50	0.9938	3.20	0.9993	3.90	1.0000
0.41	0.6591	1.11	0.8665	1.81	0.9649	2.51	0.9940	3.21	0.9993	3.91	1.0000
0.42	0.6628	1.12	0.8686	1.82	0.9656	2.52	0.9941	3.22	0.9994	3.92	1.0000
0.43	0.6664	1.13	0.8708	1.83	0.9664	2.53	0.9943	3.23	0.9994	3.93	1.0000
0.44	0.6700	1.14	0.8729	1.84	0.9671	2.54	0.9945	3.24	0.9994	3.94	1.0000
0.45	0.6736		0.8749	1.85	0.9678	2.55	0.9946	3.25	0.9994	3.95	1.0000
0.46	0.6772	1.16	0.8770	1.86	0.9686	2.56	0.9948	3.26	0.9994	3.96	1.0000
0.47	0.6808	1.17	0.8790	1.87	0.9693	2.57	0.9949	3.27	0.9995	3.97	1.0000
0.48	0.6844	1.18	0.8810	1.88	0.9699	2.58	0.9951	3.28	0.9995	3.98	1.0000
0.49	0.6879	1.19	0.8830	1.89	0.9706	2.59	0.9952	3.29	0.9995	3.99	1.0000
					0.9713						
0.50	0.6915	1.20	0.8849	1.90		2.60	0.9953	3.30	0.9995	4.00	1.0000
0.51	0.6950	1.21	0.8869	1.91	0.9719	2.61	0.9955	3.31	0.9995		
0.52	0.6985	1.22	0.8888	1.92	0.9726	2.62	0.9956	3.32	0.9995		
0.53	0.7019	1.23	0.8907	1.93	0.9732	2.63	0.9957	3.33	0.9996		
0.54	0.7054	1.24	0.8925	1.94	0.9738	2.64	0.9959	3.34	0.9996		
0.55	0.7088	1.25	0.8944	1.95	0.9744	2.65	0.9960	3.35	0.9996		
0.56	0.7123	1.26	0.8962	1.96	0.9750	2.66	0.9961	3.36	0.9996		
0.57	0.7157	1.27	0.8980	1.97	0.9756	2.67	0.9962	3.37	0.9996		
0.58	0.7190	1.28	0.8997	1.98	0.9761	2.68	0.9963	3.38	0.9996		
0.59	0.7224	1.29	0.9015	1.99	0.9767	2.69	0.9964	3.39	0.9997		
0.60	0.7257	1.30	0.9032	2.00	0.9772	2.70	0.9965	3.40	0.9997		
0.61	0.7291	1.31	0.9049	2.01	0.9778	2.71	0.9966	3.41	0.9997		
0.62	0.7324	1.32	0.9066	2.02	0.9783	2.72	0.9967	3.42	0.9997		
0.63	0.7357	1.33	0.9082	2.03	0.9788	2.73	0.9968	3.43	0.9997		
0.64	0.7389	1.34	0.9099	2.04	0.9793	2.74	0.9969	3.44	0.9997		
0.65	0.7422	1.35	0.9115	2.05	0.9798	2.75	0.9970	3.45	0.9997		
0.66	0.7454	1.36	0.9131	2.06	0.9803	2.76	0.9971	3.46	0.9997		
0.67	0.7486	1.37	0.9147	2.07	0.9808	2.77	0.9972	3.47	0.9997		
0.68	0.7517	1.38	0.9162	2.08	0.9812	2.78	0.9973	3.48	0.9997		
0.69	0.7549	1.39	0.9177	2.09	0.9817	2.79	0.9974	3.49	0.9998		